منتدى طلبة كلية الهندسه بأسوان
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

منتدى طلبة كلية الهندسه بأسوان

منتدى طلبة كلية الهندسه بأسوان
 
الرئيسيةالتسجيلأحدث الصوردخول

 

 Systems of Linear Equations and Matrices

اذهب الى الأسفل 
+3
MADA
القيصر
john_nassiem
7 مشترك
كاتب الموضوعرسالة
john_nassiem
مهندس جديد
مهندس جديد



عدد المساهمات : 30
تاريخ التسجيل : 05/11/2007
رقم العضوية : 206
Upload Photos : Systems of Linear Equations and Matrices Upload

Systems of Linear Equations and Matrices Empty
مُساهمةموضوع: Systems of Linear Equations and Matrices   Systems of Linear Equations and Matrices I_icon_minitimeالثلاثاء 13 نوفمبر - 18:35


اتفضل
بحث الرياضة بتاع المصفوفات

Systems of Linear Equations: Gaussian Elimination
Systems of Linear Equations and Matrices Bar
It is quite hard to solve non-linear systems of equations, while linear systems are quite easy to study. There are numerical techniques which help to approximate nonlinear systems with linear ones in the hope that the solutions of the linear systems are close enough to the solutions of the nonlinear systems. We will not discuss this here. Instead, we will focus our attention on linear systems.

For the sake of simplicity, we will restrict ourselves to three, at most four, unknowns. The reader interested in the case of more unknowns may easily extend the following ideas.



Definition. The equation

a x + b y + c z + d w = h


where a, b, c, d, and h are known numbers, while x, y, z, and w are unknown numbers, is called a linear equation. If h =0, the linear equation is said to be homogeneous. A linear system is a set of linear equations and a homogeneous linear system is a set of homogeneous linear equations.


For example,

Systems of Linear Equations and Matrices Img1


and

Systems of Linear Equations and Matrices Img2


are linear systems, while

Systems of Linear Equations and Matrices Img3


is a nonlinear system (because of y2). The system

Systems of Linear Equations and Matrices Img4


is an homogeneous linear system.


Matrix Representation of a Linear System


Matrices are helpful in rewriting a linear system in a very simple form. The algebraic properties of matrices may then be used to solve systems. First, consider the linear system

Systems of Linear Equations and Matrices Img5


Set the matrices

Systems of Linear Equations and Matrices Img6


Using matrix multiplications, we can rewrite the linear system above as the matrix equation

Systems of Linear Equations and Matrices Img7


As you can see this is far nicer than the equations. But sometimes it is worth to solve the system directly without going through the matrix form. The matrix A is called the matrix coefficient of the linear system. The matrix C is called the nonhomogeneous term. When Systems of Linear Equations and Matrices Img8, the linear system is homogeneous. The matrix X is the unknown matrix. Its entries are the unknowns of the linear system. The augmented matrix associated with the system is the matrix [A|C], where

Systems of Linear Equations and Matrices Img9




In general if the linear system has n equations with m unknowns, then the matrix coefficient will be a nxm matrix and the augmented matrix an nx(m+1) matrix. Now we turn our attention to the solutions of a system.


Definition. Two linear systems with n unknowns are said to be equivalent if and only if they have the same set of solutions.


This definition is important since the idea behind solving a system is to find an equivalent system which is easy to solve. You may wonder how we will come up with such system? Easy, we do that through elementary operations. Indeed, it is clear that if we interchange two equations, the new system is still equivalent to the old one. If we multiply an equation with a nonzero number, we obtain a new system still equivalent to old one. And finally replacing one equation with the sum of two equations, we again obtain an equivalent system. These operations are called elementary operations on systems. Let us see how it works in a particular case.

Example. Consider the linear system

Systems of Linear Equations and Matrices Img10




The idea is to keep the first equation and work on the last two. In doing that, we will try to kill one of the unknowns and solve for the other two. For example, if we keep the first and second equation, and subtract the first one from the last one, we get the equivalent system

Systems of Linear Equations and Matrices Img11


Next we keep the first and the last equation, and we subtract the first from the second. We get the equivalent system

Systems of Linear Equations and Matrices Img12


Now we focus on the second and the third equation. We repeat the same procedure. Try to kill one of the two unknowns (y or z). Indeed, we keep the first and second equation, and we add the second to the third after multiplying it by 3. We get

Systems of Linear Equations and Matrices Img13


This obviously implies z = -2. From the second equation, we get y = -2, and finally from the first equation we get x = 4. Therefore the linear system has one solution

Systems of Linear Equations and Matrices Img14


Going from the last equation to the first while solving for the unknowns is called backsolving.


Keep in mind that linear systems for which the matrix coefficient is upper-triangular are easy to solve. This is particularly true, if the matrix is in echelon form. So the trick is to perform elementary operations to transform the initial linear system into another one for which the coefficient matrix is in echelon form.
Using our knowledge about matrices, is there anyway we can rewrite what we did above in matrix form which will make our notation (or representation) easier? Indeed, consider the augmented matrix

Systems of Linear Equations and Matrices Img15


Let us perform some elementary row operations on this matrix. Indeed, if we keep the first and second row, and subtract the first one from the last one we get

Systems of Linear Equations and Matrices Img16


Next we keep the first and the last rows, and we subtract the first from the second. We get

Systems of Linear Equations and Matrices Img17


Then we keep the first and second row, and we add the second to the third after multiplying it by 3 to get

Systems of Linear Equations and Matrices Img18


This is a triangular matrix which is not in echelon form. The linear system for which this matrix is an augmented one is

Systems of Linear Equations and Matrices Img13


As you can see we obtained the same system as before. In fact, we followed the same elementary operations performed above. In every step the new matrix was exactly the augmented matrix associated to the new system. This shows that instead of writing the systems over and over again, it is easy to play around with the elementary row operations and once we obtain a triangular matrix, write the associated linear system and then solve it. This is known as Gaussian Elimination. Let us summarize the procedure:


Gaussian Elimination. Consider a linear system.

1.
Construct the augmented matrix for the system;
2.
Use elementary row operations to transform the augmented matrix into a triangular one;
3.
Write down the new linear system for which the triangular matrix is the associated augmented matrix;
4.
Solve the new system. You may need to assign some parametric values to some unknowns, and then apply the method of back substitution to solve the new system.

Example. Solve the following system via Gaussian elimination

Systems of Linear Equations and Matrices Img20


The augmented matrix is

Systems of Linear Equations and Matrices Img21


We use elementary row operations to transform this matrix into a triangular one. We keep the first row and use it to produce all zeros elsewhere in the first column. We have

Systems of Linear Equations and Matrices Img22


Next we keep the first and second row and try to have zeros in the second column. We get

Systems of Linear Equations and Matrices Img23


Next we keep the first three rows. We add the last one to the third to get

Systems of Linear Equations and Matrices Img24


This is a triangular matrix. Its associated system is

Systems of Linear Equations and Matrices Img25


Clearly we have v = 1. Set z=s and w=t, then we have

Systems of Linear Equations and Matrices Img26


The first equation implies
x = 2 + Systems of Linear Equations and Matrices Img1xy + Systems of Linear Equations and Matrices Img2xz - w - Systems of Linear Equations and Matrices Img1xv.


Using algebraic manipulations, we get

x = - Systems of Linear Equations and Matrices Img3x - Systems of Linear Equations and Matrices Img4xs - t.



Putting all the stuff together, we have

Systems of Linear Equations and Matrices Img29




Example. Use Gaussian elimination to solve the linear system

Systems of Linear Equations and Matrices Img30


The associated augmented matrix is

Systems of Linear Equations and Matrices Img31


We keep the first row and subtract the first row multiplied by 2 from the second row. We get

Systems of Linear Equations and Matrices Img32


This is a triangular matrix. The associated system is

Systems of Linear Equations and Matrices Img33


Clearly the second equation implies that this system has no solution. Therefore this linear system has no solution.



Definition. A linear system is called inconsistent or overdetermined if it does not have a solution. In other words, the set of solutions is empty. Otherwise the linear system is called consistent.


Following the example above, we see that if we perform elementary row operations on the augmented matrix of the system and get a matrix with one of its rows equal to Systems of Linear Equations and Matrices Img34, where Systems of Linear Equations and Matrices Img35, then the system is inconsistent
الرجوع الى أعلى الصفحة اذهب الى الأسفل
القيصر
عضو بدرجة مهندس إستشارى
عضو بدرجة مهندس إستشارى
القيصر


عدد المساهمات : 899
تاريخ التسجيل : 06/10/2007
العمر : 34
الموقع : allah`s wide earth
رقم العضوية : 124
Upload Photos : Systems of Linear Equations and Matrices Upload

Systems of Linear Equations and Matrices Empty
مُساهمةموضوع: رد: Systems of Linear Equations and Matrices   Systems of Linear Equations and Matrices I_icon_minitimeالأربعاء 14 نوفمبر - 21:29

وكمان ممكن تلاقى اضافه على الربط ده http://www.math.hmc.edu/calculus/tutorials/linearsystems/#top

شكراا يا باش مهندس جون على الافاده
الرجوع الى أعلى الصفحة اذهب الى الأسفل
http://www.islamway.com
MADA
مهندس بيشارك كويس
مهندس بيشارك كويس
MADA


عدد المساهمات : 138
تاريخ التسجيل : 19/10/2007
العمر : 34
الموقع : في قلب الي بيحبني
رقم العضوية : 141
Upload Photos : Systems of Linear Equations and Matrices Upload

Systems of Linear Equations and Matrices Empty
مُساهمةموضوع: رد: Systems of Linear Equations and Matrices   Systems of Linear Equations and Matrices I_icon_minitimeالسبت 17 نوفمبر - 13:46

شكرا يا جماعه والله المنتدي شغال زي النار والله اكبر عقبال لما نشوفه علي سرفر جامعه جنوب الوادى جنوب الوادي
الرجوع الى أعلى الصفحة اذهب الى الأسفل
http://www.islamway.com
عصام محمود
عضو بدرجة مهندس إستشارى
عضو بدرجة مهندس إستشارى



عدد المساهمات : 2741
تاريخ التسجيل : 04/09/2007
العمر : 40
رقم العضوية : 78
Upload Photos : Systems of Linear Equations and Matrices Upload

Systems of Linear Equations and Matrices Empty
مُساهمةموضوع: رد: Systems of Linear Equations and Matrices   Systems of Linear Equations and Matrices I_icon_minitimeالسبت 17 نوفمبر - 20:55

شكرا جدا للمهندس جون على الموضوع والمجهود الرائع

وانا من المعجبين جدا بادائك ومجهودك الرائع فى المنتدى
ويثبت الموضوع
الرجوع الى أعلى الصفحة اذهب الى الأسفل
sameh
مهندس جديد
مهندس جديد



عدد المساهمات : 2
تاريخ التسجيل : 18/11/2007
رقم العضوية : 266
Upload Photos : Systems of Linear Equations and Matrices Upload

Systems of Linear Equations and Matrices Empty
مُساهمةموضوع: رد: Systems of Linear Equations and Matrices   Systems of Linear Equations and Matrices I_icon_minitimeالأحد 18 نوفمبر - 19:26

الف شكر علي التعاون المخلص منكم وشكرا ..................
سامح

الرجوع الى أعلى الصفحة اذهب الى الأسفل
YeHi@$MmZ
مراقب عام منتدى أقسام الكليه ومشرف قسمى حاسبات وكورسات هندسيه
مراقب عام منتدى أقسام الكليه ومشرف قسمى حاسبات وكورسات هندسيه
YeHi@$MmZ


عدد المساهمات : 5020
تاريخ التسجيل : 25/06/2007
العمر : 37
الموقع : سرى
رقم العضوية : 10
Upload Photos : Systems of Linear Equations and Matrices Upload

Systems of Linear Equations and Matrices Empty
مُساهمةموضوع: رد: Systems of Linear Equations and Matrices   Systems of Linear Equations and Matrices I_icon_minitimeالإثنين 19 نوفمبر - 17:02

شكراً شكراً

ع فكرة أنا أرشدت ناس كتييير ع الموضوع دة
كانوا دايخين عليه
الرجوع الى أعلى الصفحة اذهب الى الأسفل
القيصر
عضو بدرجة مهندس إستشارى
عضو بدرجة مهندس إستشارى
القيصر


عدد المساهمات : 899
تاريخ التسجيل : 06/10/2007
العمر : 34
الموقع : allah`s wide earth
رقم العضوية : 124
Upload Photos : Systems of Linear Equations and Matrices Upload

Systems of Linear Equations and Matrices Empty
مُساهمةموضوع: رد: Systems of Linear Equations and Matrices   Systems of Linear Equations and Matrices I_icon_minitimeالثلاثاء 20 نوفمبر - 17:50

على فكره يا جماعه الدكتور قال انه مينفعش ان كل الطلبه تجيب نفس البحث يعنى كل واحد المفروض انه يدخل على جوجل ويجيب بحث غير ده
الرجوع الى أعلى الصفحة اذهب الى الأسفل
http://www.islamway.com
himmle8
مهندس نشيط
مهندس نشيط
himmle8


عدد المساهمات : 155
تاريخ التسجيل : 28/10/2007
العمر : 34
الموقع : In this life
رقم العضوية : 154
Upload Photos : Systems of Linear Equations and Matrices Upload

Systems of Linear Equations and Matrices Empty
مُساهمةموضوع: رد: Systems of Linear Equations and Matrices   Systems of Linear Equations and Matrices I_icon_minitimeالخميس 22 نوفمبر - 22:31

Systems of Linear Equations and Matrices 700120
بيقدم ورده
الرجوع الى أعلى الصفحة اذهب الى الأسفل
زائر
زائر




Systems of Linear Equations and Matrices Empty
مُساهمةموضوع: رد: Systems of Linear Equations and Matrices   Systems of Linear Equations and Matrices I_icon_minitimeالجمعة 23 نوفمبر - 21:29

قلب متشكرين جدا جدا على البحث ده .......بس انا حاسس ان البحث ده كله من المقرر
ومفهوش معلومات اضافية ولا ايه.وبالنسبة للكلاام الي قالوا الدكتور ...انا عن نفسي
بدور في الجوجل مش بلاقي حاجة محددة
الرجوع الى أعلى الصفحة اذهب الى الأسفل
عصام محمود
عضو بدرجة مهندس إستشارى
عضو بدرجة مهندس إستشارى



عدد المساهمات : 2741
تاريخ التسجيل : 04/09/2007
العمر : 40
رقم العضوية : 78
Upload Photos : Systems of Linear Equations and Matrices Upload

Systems of Linear Equations and Matrices Empty
مُساهمةموضوع: رد: Systems of Linear Equations and Matrices   Systems of Linear Equations and Matrices I_icon_minitimeالجمعة 23 نوفمبر - 21:42

hatem كتب:
قلب متشكرين جدا جدا على البحث ده .......بس انا حاسس ان البحث ده كله من المقرر
ومفهوش معلومات اضافية ولا ايه.وبالنسبة للكلاام الي قالوا الدكتور ...انا عن نفسي
بدور في الجوجل مش بلاقي حاجة محددة

المهم أخى العزيز أن تفهم هذا سواء هو من الكتاب أو من خارجه فما فائدة البحث ان كان للتسليم فقط وليس لفهم ما بداخله
الرجوع الى أعلى الصفحة اذهب الى الأسفل
john_nassiem
مهندس جديد
مهندس جديد



عدد المساهمات : 30
تاريخ التسجيل : 05/11/2007
رقم العضوية : 206
Upload Photos : Systems of Linear Equations and Matrices Upload

Systems of Linear Equations and Matrices Empty
مُساهمةموضوع: رد: Systems of Linear Equations and Matrices   Systems of Linear Equations and Matrices I_icon_minitimeالإثنين 26 نوفمبر - 12:53

يا اخوانا الدفعة كلها هتسلم نفس التقارير علشان انا دخلت على الجوجل و مفيش غير عشر أبحاث تقدروا تجيبوها
و الدكتور عارف اننا هنكرر أكيد
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
Systems of Linear Equations and Matrices
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» Systems, Controls, Embedded Systems, Energy, and Machines
» A Student's Guide to Maxwell's Equations
» Computer Methods for Ordinary Differential Equations
» حصريا برنامج رائع جدا لحل المعادلات الرياضيه MathType 6.5B - Solve Your Equations Anywhere and Everywhere
» كل ما يحلم به مهندسوا التحليل الأنشائي في كتاب واحد ,,,, Threaded Mode | Linear Mode Formulas for Structural Dynamics: Tables, Graphs and Solutions

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى طلبة كلية الهندسه بأسوان :: هندسة * هندسة :: إعــــــــــدادى-
انتقل الى: